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The Modeling of Singularities in the
Finite-Difference Approximation of the
Time-Domain Electromagnetic-Field
Equations

GERRIT MUR

Abstract— When the electromagnetic-field equations are solved in a
region with a corner, singularities in the field or in its spatial derivatives
will be present at these corners. These singularities cause the local trunca-
tion error in a finite-difference approximation of the field equations to be
unbounded. In this paper it is shown that failing to take these singularities
into account leads to large errors in the finite-difference solution of the
time-domain electromagnetic-field equations. A simple method is described
to account for these singularities while retaining the simplicity of the
finite-difference formulation. Numerical results are given that demonstrate
the accuracy obtained when our technique is used.

I. INTRODUCTION

ECENTLY, the finite-difference formulation of time-

domain electromagnetic-field problems has been used
for solving a wide variety of field problems [1]-[7]. For
these problems, finite-difference methods have the ad-
vantage of being efficient and very flexible. When the
configuration under investigation contains a conducting
obstacle with edges, which is often the case, the domain in
which the field has to be computed will usually have
corners. At a corner the field, or one of its spatial deriva-
tives, has a singularity which would cause the local trunca-
tion error in the finite-difference approximation of the
field-equations to be unbounded. Consequently, the error
in the numerical solution of the field problem could be
large when singularities are not taken into account. In this
paper we present a method to account for these singulari-
ties while retaining the simplicity of the finite-difference
formulation. The method is described and tested for two-
dimensional configurations and for fields that are either E-
or H-polarized. It can also, in principle, be used for
three-dimensional configurations. Numerical results are
presented to demonstrate that for accurate results to be
obtained the singularities must be taken into account.

II. FINITE-DIFFERENCE APPROXIMATIONS OF THE
ELECTROMAGNETIC-FIELD EQUATIONS

In Fig. 1 we have depicted a cross section of the
two-dimensional configuration to be investigated. The con-
figuration is uniform in the z-direction of a Cartesian
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Fig. 1. Cross section of a perfectly conducting obstacle that is uniform

in the z-direction.

coordinate system and we assume that the fields in the
configuration do not ‘depend on z. The region that is
occupied by the perfectly conducting obstacle is indicated
as Sc. It has a boundary C and the region surrounding the
conductor is S. Since the behavior of the field near the
edges of S, does not depend on the properties of the
homogeneous medium in S but only on the angle a (see
Fig. 1) we can, without restricting ourselves, assume that

. the properties of the medium in § are those of a vacuum.

For fields that do not depend on z, the electromagnetic-field
equations reduce to two uncoupled sets of three equations,
namely one for the case of E-polarization, i.e., when E=E,i,

b, H,=—3,E, (1a)
nod H, =8, E, (1b)
€0, E, =09, H,—9d H, (1c)

and one for the case of H-polarization, i.e., when H=H, i,
€0, E,=0,H, (2a)
€0, E,=—0.H, (2b)
pod H, =0,E, —9,E,. (2¢)

For both cases we have the Boundary condition
nXE=0, (3)

where n denotes the unit vector along the normal to C. We

now introduce the finite-difference approximation of (1)
and (2) and write any function of space and time as

F"(i, j)=F(ih, jh,nk) )]

where h=8x=4y is the space increment and k=¥t is the
time increment. By positioning the field components of E
and H on the mesh in the way that is depicted in Fig. 2 and
evaluating the relevant components of E and H at alternate
half-time steps we obtain finite-difference expressions that

onC
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Fig. 2. Positions of the field components on the mesh for E-polarization
( H-polarization).
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Fig. 3. The approximated boundary C” and a local polar coordinate
system centered at the corner at node (i, ;).

have a local truncation error of the second order in all
increments. The finite-difference approximation for (1) is

HIV2(i, j+1/2)=HpV2(i, j+1/2)
—(k/poh ) E!(i, j+1)—E;(i, j)) (5a)
Lg”*/%i+1/2,j):fgf*/%i+1/2,j)
+(k/uoh)(Er(i+1, j)—E!i, j)) (5b)
EFFi, Yy=Eni, j)+ (k/egh)(HP VA (i+1/2, )
—H V2 (i—1/2, j)—H!TV(i, j+1/2)
+HIT2(0, j—1/2)). (5¢)
The finite-difference approximation for (2) is
EI*V2(i, j+1/2)=E];7'2(i, j+1/2)
+(k/eoh)(H(i, j+1)—H!(i, j)) (6a)
Ey”+1/2(i+1/2,j)=Ey"_1/2(i+1/2,j)
—(k/egh)(H(i+1, j)—H(i, j)) (6b)
H i, j)=HI (i, j)+ (k/moh) (EZ172(, j+1/2)
—E}TV2(i, j—1/2)—E;T V2 (i+1/2, §)
+EIT2(i-1/2, j)). (6c)

We note that (5) and (6) are a two-dimensional form of
Yee’s algorithm [1]. The condition for stability of (5) and
(6) is [3]

k<h/(co2) (7)

where ¢, = (o)~ '/? denotes the speed of light in vacuo.
It can easily be shown that (5) and (6) have a local
truncation error of the second order in all increments.

As to the approximation of the boundary C of the
obstacle we note that C will usually not coincide with the
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lines through the nodes of the mesh. It is, in principle,
possible to derive finite-difference approximations of the
boundary conditions for an arbitrary C. This, however,
would yield complicated difference equations and would
require a large amount of logic. In order to circumvent
these problems we introduce an approximated boundary
C’ that passes through the nodes (i, j), with i, j integer,
and that consists of straight lines which are either parallel
to the x- or y-axis or are at an angle of 7 /4 with the
coordinate directions (see Fig. 3). The nodes through which
C’ passes are chosen such that the closest possible fit is
obtained and the error in the location of C’ made in this
way is always less than 4 /2.

I1I.

In this section we shall deal with the approximation of
the field near a corner in the configuration, i.e., in a region
where a component of the field, or a spatial derivative of
such a component, may be singular, thus making the error
in (5) and (6) applied to such a region to be unbounded.
We shall start with the case of E-polarization.

APPROXIMATIONS FOR EDGE SINGULARITIES

A. Edge Singularities, E-Polarization

In the case of E-polarization C’ passes through the
E,-nodes. From (3) it follows that £, =0 on C’, even for
nodes on the edge of a corner. For the H, and H, nodes
that are at a distance 4 /2 from such an edge (5a) and (5b)
cannot be used since E, is not differentiable near the edge
and consequently the error in (5a) and (5b) would be
unbounded. To overcome this difficulty we now analyze
the field near a corner by introducing a local polar coordi-
nate system (see Fig. 3). For E, and H, we have

(8)

AU‘()atH(p(r’ P, t):arEz(r’ P, t)'

Near the edge E, and H,, can, by using the expansion given
by Jones [8], be approximated as

E,=c,(t)r"sin(v,@)+c,(2)r2sin(vyp)+ - - -
H(p:cl(t)Yl(t)r”‘_lsm(Vl(P)
+e, (1) Y, (2)r"> sin (w0 )+ - - -

(9)

(10)
with
v,=nn/(2n—a). (11)

We now apply (8) to a point at a distance /2 from the
edge. Using the leading term of (9) in (8) we obtain

"l‘Oathy(h/z’ P, t): (arEz(r’ P, t))lr:h/Z
=V121_”‘Ez(h,(p,t)/h. (12)

Using the central difference approximation for the time
derivative we obtain from (12)

H‘p(h/z,q),(n'f'I/Z)k):Hw(h/Z,(p,(n"'l/Z)k)
+(k/poh)v 2" ME (h, @, nk).
(13)

We now choose ¢ such that (r=h/2, ¢) will coincide with
an H, or H, node on the mesh. At these nodes H,, equals
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the relevant Cartesian component of H (or its opposite).
Using the fact that E, =0 at =0 we observe that (13) has
the same form as (5a) or (5b) except for a factor C;=
v,2' 7", Consequently, the singularity at a corner can be
taken into account by inserting this factor in (5a) and (5b).
Since, for a<a, we have 272 <, <1 no difficulties with
the stability of the difference scheme have to be expected
and indeed no instabilities due to the use of this factor
have been observed. An analysis of (13) yields that it has a
truncation error of the order », —1 in the space variables
and of the second order in the time variable. A higher
order accurate, but more complicated, approximation of
the field near the edge can be obtained by taking into
account the first two terms of (9) and (10).

B. Edge Singularities, H-Polarization

In the case of H-polarization C’ passes through H,-nodes.
From (2) and (3) it follows that we have the boundary
condition d,H,=0 on C’. For the nodes on a straight
section of C’ this boundary condition can easily be imple-
mented. When the node is on the edge of a corner the
situation is more complicated since (a) n is not defined at
this node, and (b) H, is not differentiable near this edge.
As above we analyze the field near the edge by introducing
a local polar coordinate system. In polar coordinates the
field-equations read

€0,E,=(1/r)d H, (14a)
e, E, =~ H, (14b)
pod L, =—(1/r)(3,(rE,)—3,E ). (l4c)

Near the edge, H,, E,, and E,, can, by using the expansion
given by Jones [8], be approximated as

H,=cy(t)+c,(t)r"cos(vip)+ --- (15)

E, =c(t)Z{’(1)sin(v,@)+ - - (16)

EQD=c0(t)Z((,2)(t)r+c1(t)Z§2)(t)r”‘_1cos(vltp)-i- e
(17)

with », from (11). Starting with the approximation of H, at
the edge (see Fig. 3) we have from (15) H,(i, j)=c,(¢) and
consequently H,(i, j) is coupled only to those terms in (16)

and (17) that do not depend on ¢. Hence we have from
(14c¢) and (17)

B H (1, 7)== (/R rEX(r.1))= =2¢0(1)Z§(2)
(18)

where EQ(r, £)=c,(1)Z§(¢)r denotes the term in the ex-
pansion (17) of E, that does not depend on ¢. Assuming
that EQ(r, t) can be obtained from the E, and E, nodes at
a dlstance h/2 from the edge we can write (18) as

wd H, (i, j)=—4ED(h/2,1) /h. (19)

In order to obtain EJ” we first note that E, and E, are
available at nodes at a distance of 4/2 from the edge and
that these Cartesian field components are equal to E, or its
opposite. The relevant values of E , however, will not be
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TABLEI
WEIGHTS FOR THE COMPUTATION OF H” (i, j) AT A CORNER
Sc o w1 Wy Wa w4
x<ihuyzjh 3n/2 0 2 2 0
x<ihu(x-y) <(i-3)h 5m/4 0 4/3 8/3 0
xsih T 1 1 2 0
(x-y)<(i-j)h m 0 2 2 0
xsihn(x-y)=(i-j)h 3n/4 475 8/5 8/5 0
x<ihnyz3jh /2 2/3 4/3 4/3 2/3
(x-y)=(i-J)hn(x+y)<(i+j)h /2 4/3 4/3 4/3 0
(xty)s(i+3)hny=3h /4 8/7 8/7 8/7 4/7
(x+y)=(i+3)hnx<ih 0 1 1 1 1
y=jhnx<1h : o 1 1 1 1/2*

"+é(1 1/2,j) has a value on both sides of SC, each of which has to be
taken into account with a weight 1/2.

equal to E{ but will also contain the g-dependent terms of
(17). E® is obtained from them by using weighting con-
stants w, that depend on the angle o and on the orientation
of the wedge. They have to be chosen such that the
contributions of all p-dependent terms of (17) cancel. It
can be shown that (19) can be written as

H Wi, j)=H (i, 7))+ (k/poh)
(W ErT2(3, j+1/2)
—wEyT12(i, j—1/2)
—w E}T12(i+1/2, )

+w,EfV2(i—1/2, j)). (20)

In Table I the weights are given for a number of angles a
and for certain orientations of the wedge. All other config-
urations with a corner that can occur under the assump-
tions we have made regarding the boundary C’ (see Section
II) can be dealt with using the weights given in Table I and
symmetry properties. Equation (20) has the same form as
the finite-difference approximation of (2¢) in a domain
with discontinuities in the permittivity. For completeness
we have added the case = (i.e., a plane boundary) to
Table I. ,

Having found an approximation for H, at the edge of a
corner we now start with the derivation of equations that
apply to the E, and E, nodes at a distance 2/2 from the
edge. Applying (14a) to a point with r=h/2 and using the
first two terms of (15) we obtain, after some manipulations

cOatE(p(h/za P, t): - (aer(r’ P, t))|r=h/2
= _,,121—”|(Hz(h,q)’ t)_Hz(Oa P, t))/h (21)

where we have used the fact that the first term in (15) does
not depend on r. Using the central difference approxima-
tion for the time derivative we obtain from (21)

Eq)(h/2,q>,(n+ 1/2)k):Eq,(h/2,q>,(n—— 1/2)k)

—(k/eoh)r 2! (H,(h, @, nk)—H,(0, 9, nk)). (22)
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We now choose ¢ such that (r=7h/2, ¢) coincides with an
E, or E, node on the mesh. At these nodes E, equals the
relevant Cartesian component of E, or its opposite, and we
see that (22) has the same form as (6a) or (6b) except for a
factor Cg=»,2'"", which can easily be inserted in for
them to account for the edge singularities. As in the case of
E-polarization no instabilities due to the modelling of the
edge singularities have to be expected and no instabilities
due to the use of this factor have been observed. An
analysis of (20) and (22) reveals that the local truncation
error near the edge is of the order »,—1 in the space
variables and of the second order in the time variable. A
higher order accurate approximation of the field near the
edge can be obtained by taking into account the first three
terms of (15) and (17).

IV. NuMericaL RESULTS

In this section we shall demonstrate the accuracy and the
improvement in the rate of convergence that is achieved by
using our approximations for the edge singularities. We
compare results that have been obtained by using our
approximations near the edge with those obtained when
the singularity was not taken into account. Since it is easier
to make such a comparison for E-polarization than for
H-polarization we will give results for the former case only.
The fields in the configuration are caused by a time
harmonic incident plane wave

E,=sin (27(x+cyt) /N )e(x+cyt)

(23)

propagating in the direction of decreasing x (see Fig 4) and
having a wavelength A. In (23) e(x) denotes the Heaviside
unit step function. The wavefront of the incident field
arrives at t=0 at the left-hand side of the square finite-
difference mesh of size 0.8 Ax0.8A. The computations are
carried out for a conducting obstacle S having an edge at
the center of the mesh. The obstacle is assumed to be
surrounded by a vacuum and we have used highly absorb-
ing boundary conditions [9] at the boundaries of the mesh
to simulate the relevant unbounded environment. We have
used the maximum time step that is admissible for stability
(7), and the results are presented for t=1.5A/(cv2). In
Fig. 4 the electric field near the edge is plotted for an edge
with a=0 and, in order to study convergence, for A=A /10,
A /20, and A /40.

From this figure we observe that when the singularity is
not taken into account the results are inaccurate and
converge very slowly as #— 0. When the singularity is taken
into account convergence is much faster and accurate
results are already obtained for n=A/h=20. In Table II
we present some numerical results to further show the
improvement that is obtained by accounting for the singu-
larities. To this aim we observe that, in general, the most
refined mesh leads to the best results. Comparing now, for
each included angle, the two columns we see that even for
a coarse mesh inclusion of the singularity gives already
good results. Of course a further improvement is obtained
upon refining the mesh.
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Fig. 4. Comparison of results for the field near the edge of a perfectly
conducting strip computed with and without taking into account the
singularity near the edge (n=A/h).

TABLE I
COMPARISON OF RESULTS FOR E,(4,0)
o 0 /4 /2 3n/4

sing. incl. sing. incl. sing. incl. sing. incl.
n no yes no yes no yes no yes
10 0.866 1.03 0.875 1.01 0.730 0.818 1.07 1.12
20 0.992 1.08 0.998 1.06 0.777 0.812 1.10 111
40 1.04 1.08 1.04 1.06 0.803 0.816 1.11  1.12

For each o results are given that are obtained accounting for the singu-
larity (yes) (i.e. by using equation (13)) and without accounting for the
singularity (no).

We observe that the necessity of taking into account the
singularity increases with decreasing «, which is to be
expected since the order of the singularity increases with
decreasing «. Numerical experience in the case of H-
polarization shows that, when the singularity is taken into
account, the same accuracy and convergence is obtained as
in the case of E-polarization.

V. CONCLUSION

In this paper we have shown that when the time-domain
electromagnetic-field equations are solved by using a finite-
difference technique singularities in the field due to a
corner can, and should be, taken into account. We have
described a very simple and stable method to do this. Our
method retains the simplicity of the finite-difference method
since its implementation only requires the adjustment of a
few constants in the finite-difference equations that are
used near the edge of a corner.
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Abstract— A general coupled-mode theory is developed for dielectric
waveguide structures containing a gyrotropic layer. The theory is applied to
several specific structures. Based on qualitative and numerical analyses, we
studied the feasibility of such structures as the new type of nonreciprocal
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devices for millimeter-wave applications. A number of considerations for
practical designs are included.

1. INTRODUCTION

EVELOPMENT of microwave and millimeter-wave

isolators and circulators becomes more difficult as
the frequency is increased {1], [2]. This is because the
nonreciprocal property of ferrite used for these devices
represented by the ratio of off-diagonal and diagonal com-
ponents of the permeability tensor decreases with the
frequency. One solution is to use a ferrite with high-
saturation magnetization (47M ). However, it is difficult to
obtain a ferrite material with more than 5 kG of 47 M.
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