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The Modeling of Singularities in the
Finite-Difference Approximation of the

Time-Domain Ele~tromagnetic-Field
Equations

GERRIT MUR

Abstract— When the electromagnetic-field equations are solved in a

region with a comer, singularities in the field or in its spatiaf derivatives

will be present at these comers. These singularities cause the load trunca-

tion error in a finite-difference approximation of the field equations to be

unbounded. 1ssthis paper it is shown that faifing to take these singularities

into account leads to large errors in the finite-difference solution of the

time-domain electromagnetic-field equations. A simple method is described

to account for these singularities while retaining the simplicity of the

finite-difference fommlation. Numerical results are given that demonstrate

the accuracy obtained when our technique is used.

I. INTRODUCTION

R 13CENTLY, the finite-difference formulation of time-

domain electromagnetic-field problems has been used

for solving a wide variety of field problems [ 1]-[7]. For

these problems, finite-difference methods have the ad-

vantage of being efficient and very flexible. When the

configuration under investigation contains a conducting

obstacle with edges, which is often the case, the domain in

which the field has to be computed will usually have

corners. At a corner the field, or one of its spatial deriva-

tives, has a singularity which would cause the local trunca-

tion error in the finite-difference approximation of the

field-equations to be unbounded. Consequently, the error

in the numerical solution of the field problem could be

large when singularities are not taken into account. In this

paper we present a method to account for these singulari-

ties while retaining the simplicity of the finite-difference

formulation. The method is described and tested for two-

dimensional configurations and for fields that are either E-

or H-polarized. It can also, in principle, be used for

three-dimensional configurations. Numerical results are

presented to demonstrate that for accurate results to be

obtained the singularities must be taken into account.

II. FINITE-DIFFERENCE APPROXIMATIONS OF THE

ELECTROMAGNETIC-FIELD EQUATIONS

In Fig. 1 we have depicted a cross section of the

two-dimensional configuration to be investigated. The con-

figuration is uniform in the z-direction of a Cartesian
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Fig. 1. Cross section of a perfectly conducting obstacle that is uniform

in the z-direction.

coordinate system and we assume that the fields in the,.
configuration do not depend on z. The region that is

occupied by the perfectly conducting obstacle is indicated

as Sc. It has a boundary C and the region surrounding the

conductor is S. Since the behavior of the field near the

edges of Sc does not depend on the properties of the

homogeneous medium in S but only on the angle a (see

Fig. 1) we can, without restricting ourselves, assume that

the properties of the medium in S are those of a vacuum.

For fields that do not depend on z? the electromagnetic-field

equations reduce to two uncoupled sets of three equations,

namely one for the case of E-polarization, i.e., when E= Eziz

poatHx = –ayEz (la)

poalHy = axE, (lb)

EoatEz =ax Hy —ayHx (lC)

and one for the case of H-polarization, i.e., when H= HZiZ

E~atEX = ayHZ (2a)

EoatEY = – axHz (2b)

poatHz =ayEx – axEy. (2C)

For both cases we have the boundary condition

nXE=O, on C (3)

where n denotes the unit vector along the normal to C. We

now introduce the finite-difference approximation of (1)

and (2) and write any function of space and time as

F“(i, j)= F(ih, jh, nk) (4)

where h =8X=&y is the space increment and k= 8t is the

time increment. By positioning the field components of E
and H on the mesh in the way that is depicted in Fig. 2 and

evaluating the relevant components of E and Hat alternate

half-time steps we obtain finite-difference expressions that
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Fig. 2. Positions of the field components on the mesh for E-polarization
(H-poltiation).
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Fig. 3. The atmroxirnated boundarv C’ and a local polar coordinate

&tem centered at the ~orner at node ( i, jj.

have a local truncation error of the second order in all

increments. The finite-difference approximation for (1) is

H;+ ’/’(i, j+l/2)=H;-’/’(i, j+l/2)

-(k/pOh)(E;(i, j+l)-E:(i, j)) (5a)

H~+l/2(i+l/2, j)= H;-l\2(i+l/2, j)

+(k/pOh)(E:(i+ l,j)–E~(i, j)) (5b)

E;+l(i, j)=li:(i, j)+(k/cOh)(HJ+112 (i+l/2, j)

–H~+112(i–l/2, j)–H~+’/2(i, j+l/2)

+H:+1\2(i, j–1/2)). (5C)

The finite-difference approximation for (2) is

EJ+’/2(i, j+l/2)=E~-112(i, j+l/2)

+(k/cOr’z)(H~(i, j+l)-H~(i, j)) (6a)

E~+1\2(i+l/2, j)=-E~-1/2(i+l/2, j)

-(k/cOh)(H~(i+l, j)-H;(i, j)) (6b)

H:+l(i, j)= HY(i, j)+(k/poh)(E;+’/2 (~, j+l/2)

–E;+’i2(i, j–l\2)–E;+’/2(i+ l/2, j)

+EJ+l/2(i–l/2, j)). (6c)

We note that (5) and (6) are a two-dimensional form of

Yee’s algorithm [1]. The condition for stability of (5) and

(6) is [3]

k<h/(cO&) (7)

where CO=((OPO) – 112 denotes the speed of light in oacuo.

It can easily ,be shown that (5) and (6) have a local

truncation error of the second order in all increments.

As to the approximation of the boundary C of the

obstacle we note that C will usually not coincide with the

lines through the nodes of the mesh. It is, in principle,

possible to derive finite-difference approximations of the

boundary conditions for an arbitrary C. This, however,

would yield complicated difference equations and would

require a large amount of logic. In order to circumvent

these problems we introduce art approximated boundary

C’ that passes through the nodes (i, j), with i, j integer,

and that consists of straight lines which are either parallel

to the x- or y-axis or are at an angle of 7r/4 with the

coordinate directions (see Fig. 3). The nodes through which

C’ passes are chosen such that the closest possible fit is

obtained and the error in the location of C’ made in this

way is always less than h/2.

III. APPROXIMATIONS FOR EDGE SINGULARITIES

In this section we shall deal with the approximation of

the field near a corner in the configuration, i.e., in a region

where a component of the field, or a spatial derivative of

such a component, may be singular, thus making the error

in (5) and (6) applied to such a region to be unbounded.

We shall start with the case of E-polarization.

A. Edge Singularities, E-Polarization

In the case of E-polarization C’ passes through the

E= -nodes. From (3) it follows that E,= O on C’, even for

nodes on the edge of a corner. For the HX and HY nodes

that are at a distance h/2 from such an edge (5a) and (5b)

cannot be used since E= is not differentiable near the edge

and consequently the error in (5a) and (5b) would be

unbounded. To overcome this difficulty we now analyze

the field near a corner by introducing a local polar coordi-

nate system (see Fig. 3). For E= and Hq we have

PO~,Hv(r>~,t)=~,E.(r,q,t). (8)

Near the edge E= and HP can, by using the expansion given

by Jones [8], be appro~mated as

E==cl(t)r’’ sin(v1q)+cz(t)r’2 sin(v2rf)+ . . . (9)

H9=c1(t)Y, (t)rp’-]sin(v1rp)

+cz(t)Yz(t)r’2- lsin(v2rf)+ . . . (10)

with

v. =n7r/(2n-a). (11)

We now apply (8) to a point at a distance h/2 from the

edge. Using the leading term of (9) in (8) we obtain

Po~,HW(h/2,9, t)=(l.Ez(r, pj t))lr=k12

=v~2 ‘–v’EZ(fi, rp, t)/h. (12)

Using the central difference approximation for the time

derivative we obtain from (12)

Hp(h/2, ~,(n+l/2)k)=H9( h/2, rp, (n-l/2)k)

+(k/poh)v12 ‘–V’E=(h, rp, nk).

(13)

We now choose rp such that (r= h/2, rp) will coincide with

an HX or HY node on the mesh. At these nodes HP equals
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the relevant Cartesian component of H (or its opposite).

Using the fact that E,= O at r= O we observe that (13) has

the same form as (5a) or (5b) except for a factor C~ =

V,2 1‘“’. Consequently, the singularity at a corner can be

taken into account by inserting this factor in (5a) and (5b).

Since, for a<~, we have 2 – 112< C~ <1 no difficulties with

the stability of the difference scheme have to be expected

and indeed no instabilities due to the use of this factor

have been observed. An analysisof(13) yields that it has a

truncation error of the order V2– 1 in the space variables

and of the second order in the time variable. A higher

order accurate, but more complicated, approximation of

the field near the edge can be obtained by taking into

account the first two terms of (9) and (10).

B. Edge Singularities, H-Polarization

In the case of H-polarization C’ passes through HZ -nodes.

From (2) and (3) it follows that we have the boundary

condition il. H: = O on C’. For the nodes on a straight

section of C’ this boundary condition can easily be imple-

mented. When the node is on the edge of a corner the

situation is more complicated since (a) n is not defined at

this node, and (b) H= is not differentiable near this edge.

As above we analyze the field near the edge by introducing

a local polar coordinate system. In polar coordinates the

field-equations read

CO~#3,= (1/r )i3TH= (14a)

@l Eq = – 3rHZ (14b)

PO~,H. =–(l/r)(~,(rEw) –~qE,). (14C)

Near the edge, Hz, ET, and EW can, by using the expansion

given by Jones [8], be approximated as

Hz=co(t)+cl(t)r”’ cos(vlq)+ .,. (15)

E,=cl(t)Z~l)(l) sin(vlcp)+ . c . (16)

E9=co(i)Z~2)(t) r+c1(t)Z[2J(t)rV’ -1cos(v1q)+ .00

(17)

with v. from (1 1). Starting with the approximation of Hz at

the edge (see Fig. 3) we have from (15) H=(z, j)= cO(t) and

consequently Hz(i, j) is coupled only to those terms in (16)

and (17) that do not depend on T. Hence we have from

(14c) and (17)

I.@H~(j, j)= –(l/r)?.(rE$)(r, t))= –2co(t)z$2)(t)

(18)

where E,$)( r, t)= Co(t) Zf2)(t)r denotes the term in the ex-

pansion (17) of Eq that does not depend on q. Assuming

that E$( r, t) can be obtained from the Ex and Ey nodes at

a distance h/2 from the edge we can write (18) as

~&H.(i, ~)= –4E$)(h/2) t)/h. (19)

In order to obtain E$ we first note that Ex and Ey are

available at nodes at a distance of h/2 from the edge and

that these Cartesian field components are equal to E9 or its

opposite. The relevant values of EW, however, will not be
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TABLE I
WEIGHTS FOR THE COMPUTATION OF H:+ ‘(i, j) AT A CORNER

Sc a ‘1 “2 ‘3 ‘4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-

x<i huy>jh 3T/2 o

xiih”(x-y)s(i-j)h 5nf4 o

xsih II 1

(x-y) .(i-j)h n o

xsihn(x-y)<(i-j)h 3Tj4 4/5

xsi hny>jh 7/2 2/3

(x-y) s(i-j)hn(x+y) .(i+j)h nl 2 4/3

(x+y)s(i+j)hny>jh 7/4 8/7

(x+y)=(i+j)hnxsih o 1

y.jh”x<lh o 1

--------------------------------------------------

2

4/3

1

2

8/5

4/3

4/3

817

1

1

--------

2

8/3

2

2

8/5

4/3

4/3

8/7

1

1

.--------

0

0

0

0

0

2/3

0

4/7

1

1/2”

-----

*E~*(i-1/2,j) has a value on both sides of Sc, each of which has to be

taken into account WI th a weight 1/2.

equal to E$) but will also contain the q-dependent terms of

(17). E$”) is obtained from them by using weighting con-

stants w, that depend on the angle a and on the orientation

of the wedge. They have to be chosen such that the

contributions of all r.p-dependent terms of (17) cancel. It

can be shown that (19) can be written as

H:+l(i, j)= H#(i, j)+(~/pOh)

“( wlE:+’\2(i, j+l/2)

.+I/z(i,j-~/2)—W2Ex

–wq E;+l/2(i+l/2, j)

+wyE;+l/2(i-l/2, j)). (20)

In Table I the weights are given for a number of angles a

and for certain orientations of the wedge. All other config-

urations with a comer that can occur under the assump-

tions we have made regarding the boundary C’ (see Section

II) can be dealt with using the weights given in Table I and

symmet~ properties. Equation (20) has the same form as

the finite-difference approximation of (2c) in- a domain

with discontinuities in the perrnittivity. For completeness

we have added the case a= n (i.e., a plane boundary) to

Table I.

Having found an approximation for HZ at the edge of a

corner we now start with the derivation of equations that

apply to the Ex and Ey nodes at a distance h/2 from the

edge. Applying (14a) to a point with r= h/2 and using the

first two terms of(15) we obtain, after some manipulations

coalEW(h/2, q, t)= –(~#~(r,T, ~))lr=~/2

v121-U’(H2(h, ~, t)–H,(O, T, t))/h (21)=—

where we have used the fact that the first term in (15) does

not depend on r. Using the central difference approxima-

tion for the time derivative we obtain from (21)

E9(h/2, cp, (n+l/2)k)=E9(h/2, cp, (n-l/2)k)

–(k/60h)v12’-’’’ (HZ(h, cp, nk)–HZ(O, cp, nk)). (22)



1076 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 10, OCTOBER 1981

We now choose q such that (r= h/2, qJ) coincides with an

Ex or E, node on the mesh. At these nodes EW equals the

relevant Cartesian component of E, or its opposite, and we

see that (22) has the same form as (6a) or (6b) except for a

factor C~ =V121–V1, which can easily be inserted in for

them to account for the edge singularities. As in the case of

E-polarization no instabilities due to the modelling of the

edge singularities have to be expected and no instabilities

due to the use of this factor have been observed. An

analysis of (20) and (22) reveals that the local truncation

error near the edge is of the order Vz– 1 in the space

variables and of the second order in the time variable. A

higher order accurate approximation of the field near the

edge can be obtained by taking into account the first three

terms of (15) and (17).

IV. NUMERICAL RESULTS

In this section we shall demonstrate the accuracy and the

improvement in the rate of convergence that is achieved by

using our approximations for the edge singularities. We

compare results that have been obtained by using our

approximations near the edge with those obtained when

the singularity was not taken into account. Since it is easier

to make such a comparison for E-polarization than for

H-polarization we will give results for the former case only.

The fields in the configuration are caused by a time

harmonic incident plane wave

EZ=sin(2n(x+cOt )/A)c(x+cOt) (23)

propagating in the direction of decreasing x (see Fig 4) and

having a wavelength A. In (23) c(x) denotes the Heaviside

unit step function. The wavefront of the incident field

arrives at t= O at the left-hand side of the square finite-

difference mesh of size 0.8 A *0.8A. The computations are

carried out for a conducting obstacle S having an edge at

the center of the mesh. The obstacle is assumed to be

surrounded by a vacuum and we have used highly absorb-

ing boundary conditions [9] at the boundaries of the mesh

to simulate the relevant unbounded environment. We have

used the maximum time step that is admissible for stability

(7), and the results are presented for t= 1.5~\(cOfi). In

Fig. 4 the electric field near the edge is plotted for an edge

with a= O and, in order to study convergence, for h = A/IO,

A/20, and A/40.

From this figure we observe that when the singularity is

not taken into account the results are inaccurate and

converge very slowly as h + O. When the singularity is taken

into account convergence is much faster and accurate

results are already obtained for n = A/h= 20. In Table II

we present some numerical results to further show the

improvement that is obtained by accounting for the singu-

larities. To this aim we observe that, in general, the most

refined mesh leads to the best results. Comparing now, for

each included angle, the two columns we see that even for

a coarse mesh inclusion of the singularity gives already

good results. Of course a further improvement is obtained

upon refining the mesh.

Fig. 4. Comparison of results for the field near the edge of a perfectly

conducting strip computed with and without taking into account the

singularity near the edge (n =A/h).

TABLE II
COMPARISON OF lbSULTS FOR E=(4, O)

\“l 0 7/4 W/2 3n/4

\ I siw. iml. sing. iml. sng. incl. sing. iml.

n \l no yes no yes no yes no yes

.------ ,- ---------------------------------------------------------- .

10 0.866 1.03 0.875 1.01 0.730 0.818 1.07 1.12

20 0.992 1.08 0.998 1.06 0.777 0.812 1.10 1.11

40 1.04 1.08 1.04 1.06 0.803 0.816 1.11 1.12

--... --l----------------------------------------------------------------

FOP each o results are given that are obtained accounting for the singu-

larity (yes) (i .e. by using equation (13)) and without accounting for the

singularity (no).

We observe that the necessity of taking into account the

singularity increases with decreasing a, which is to be

expected since the order of the singularity increases with

decreasing a. Numerical experience in the case of H-

polarization shows that, when the singularity is taken into

account, the same accuracy and convergence is obtained as

in the case of E-polarization.

V. CONCLUSION

In this paper we have shown that when the time-domain

electromagnetic-field equations are solved by using a finite-

difference technique singularities in the field due to a

corner can, and should be, taken into account. We have

described a very simple and stable method to do this. Our

method retains the simplicity of the finite-difference method

since its implementation only requires the adjustment of a
few constants in the finite-difference equations that are

used near the edge of a corner.
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devices for millimeter-wave applications. A number of considerations for

practicaf designs are included.

I. INTRODUCTION

D ENVELOPMENT of microwave and millimeter-wave

isolators and circulators becomes more difficult as

the frequency is increased [1], [2]. This is because the

nonreciprocal property of ferrite used for these devices

represented by the ratio of off-diagonal and diagonal com-

ponents of the permeability tensor decreases with the
frequency. one solution is to use a ferrite with high-

saturation magnetization (4 TM ). However, it is difficult to

obtain a ferri~e material with “more than 5 kG of 4 wM.
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